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PREFACE

In March of this year, we at IT Revolution once again had the pleasure of hosting 

leaders and experts from across the technology community at the DevOps Enterprise 

Forum in Portland, Oregon. The Forum’s ongoing goal is to create written guidance to 

overcome the top obstacles facing the DevOps enterprise community.

Over the years, there has been a broad set of topics covered at the Forum, including 

organizational culture and change management, architecture and technical practices, 

metrics, integrating and achieving information security and compliance objectives, 

creating business cases for automated testing, organizational design, and many more. 

As in years past, this year’s topics are relevant to the changing business dynamics we 

see happening across all industries and the role technology has to play within those 

changes. 

At the Forum, as in previous years, participants self-organized into teams, work-

ing on topics that interested them. Each team narrowed their topics so that they could 

have a “nearly shippable” artifact by the end of the second day. Watching these teams 

collaborate and create their artifacts was truly amazing, and those artifacts became 

the core of the Forum papers you see here. 

After the Forum concluded, the groups spent the next eight weeks working 

together to complete and refine the work they started together. The results can be 

found in this year’s collection of Forum papers. 

A special thanks goes to Jeff Gallimore, our co-host and partner and co-founder at 

Excella, for helping create a structure for the two days to help everyone stay focused 

and productive.

IT Revolution is proud to share the outcomes of the hard work, dedication, and col-

laboration of the amazing group of people from the 2018 DevOps Enterprise Forum. 

Our hope is that through these papers you will gain valuable insight into DevOps as 

a practice.

—Gene Kim

June 2018

Portland, Oregon
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INTRODUCTION

The move to integrated “DevOps” (a concatenation of development and operations) is 

producing a dramatic change in the way we develop and deploy software and IT sys-

tems. The result is faster time to market, more resilient and more malleable systems, 

and systems that can be used to test potential innovations faster from a scalable pro-

duction environment.

As DevOps continues to challenge the status quo and improve business outcomes 

for software systems, many of the world’s larger enterprises also need to identify how 

to scale these practices across large, complex systems composed of hardware, firm-

ware, and software. The ability to iterate and deploy faster allows companies to adapt 

to changing needs, reduce cycle time for delivery, increase value for money, improve 

transparency, and leverage innovations. 

However, there is an industry-wide misconception that this form of rapid iteration 

and improved flow applies only to software or small applications and systems. In this 

paper, we will provide an extended definition for DevOps as it applies to large, com-

plex cyber-physical systems, and offer some recommendations on how to effectively 

leverage continuous delivery and DevOps in these systems. 

Problem Statement
Industry lead and cycle times for delivering significant cyber-physical solutions—

systems such as robotics, warfighting, transportation, complex medical devices, and 

more—are insufficient to meet the increasing demands of our customers. As the size 

and complexity of cyber-physical systems increase, the visibility of the work items 

and activities in the value stream decrease, compounding the problem. Additionally, 

many large-solution providers are organized around functional areas and apply tradi-

tional, sequential, stage-gated development methods, resulting in multiple handoffs 

and delays. The net result is usually slow time to market, quality issues, cost overruns, 

and solutions that are not fit for their intended purpose. 
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Similar problems exist in the development of large-scale software systems. There, 

the DevOps movement—along with well-described principles, practices, and tool-

chains—has been shown to deliver dramatic improvements in time to market.1 

Industrial DevOps
Industrial DevOps is the application of continuous delivery and DevOps principles 

to the development, manufacturing, deployment, and serviceability of significant 

cyber-physical systems to enable these programs to be more responsive to changing 

needs while reducing lead times. This practice focuses on building a continuous deliv-

ery pipeline that provides a multi-domain flow of value to the users and stakeholders 

of those deployed systems. 

 The bodies of knowledge that inform Industrial DevOps principles and practices 

include DevOps, Lean manufacturing, Lean product development, Lean startup, sys-

tems thinking, and scaled Agile development. 

In this paper, we’ll describe some guidance that can be used to leverage the learn-

ings from DevOps and scaled Agile developments to address the challenge of building 

these complex cyber-physical systems in a more efficient and more effective manner. 

The eight recommendations (or potentially principles) elaborated upon in this paper 

are as follows:

1. Visualize and organize around the value stream.

2. Apply multiple horizons of planning.

3. Base decisions on objective evidence of system state and performance.

4. Architect for scale, modularity, and serviceability.

5. Iterate and reduce batch size.

6. Establish cadence and synchronization.

7. Employ “continu-ish integration.”

8. Be test driven.

1 The Pentagon Wars, dir. Richard Benjamin (United States: HBO, 1998), May 10, 2011, accessed April 28, 2018, 
https://www.youtube.com/watch?v=aXQ2lO3ieBA.



INDUSTRIAL DEVOPS  |  6

GUIDANCE

1. Visualize and Organize Around the Value Stream
Under the objective of efficiency, many large programs, have elected to organize 

around activities such as program management, systems, software, firmware, hard-

ware, and testing. Such an organization has been shown to be quite problematic when 

it comes to actual delivery of the solution. Delays and economic overruns have proven 

to be a significant burden on taxpayers.

To deliver systems that provide desirable business outcomes, we need to organize 

around the value stream and the end-to-end steps that are required to deliver value, as 

depicted in Figure 1.

Value Stream for Autonomous Drone

Figure 1: Value Stream: Includes All the Functions Necessary 
to Deliver End-to-End Value

When employing DevOps in large, complex systems, the first step is to define the 

value stream(s). For example, if we are building an autonomous drone to protect our 

troops, then traditionally our teams would be organized around functional areas such 

as systems engineering, hardware, software, firmware, and testing with handoffs from 

one area to the next. Teams organized around such activities are locally optimized and 

cannot deliver any end-to-end business outcome to stakeholders on a regular cadence, 

leading to a long cycle time for development as well as a long, costly recovery time.

To successfully build large, complex systems, we suggest the program should 

organize the end-to-end value stream. In the autonomous drones example, the best 

value stream organization would be around independent capabilities, such as a flight 

Program management, procurement, systems engineering/modeling,
software and firmware development, hardware development,

systems integration and testing of the integrated solution, deployment
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camera team. To build a flight camera, we will need electrical engineering, hardware 

engineering, systems engineering, software development, and testing teams. These 

teams would remove activity-based handoffs and focus on providing the specific busi-

ness outcome of providing visibility of the battleground. The team would need to 

have skills such as model-based systems engineering, sensor development, machine 

learning, and material science. Business outcomes of the product would be time-based 

video streams, munition detection, and knowledge of enemy locations.

2. Apply Multiple Horizons of Planning 
The Agile influence in DevOps for smaller capabilities focuses on short-term plan-

ning horizons with iterations typically running no longer than a few weeks. However, 

large, complex systems demand longer planning cycles that are approached with the 

notion of multiple planning horizons. These large-scaled solutions need multiple 

perspectives—from a long-term view to near-term objectives iteration and program 

increment objectives. This is especially important in mission-critical environments 

where technology is moving at such a rapid pace that a solution could be obsolete 

before a project is completed. Large, complex solutions often require multiple plan-

ning levels in order to meet goals and ensure alignments across development teams.

As Figure 2 illustrates, the planning horizon starts with a vision to understand and 

communicate the outcome for the product solution. The next level for large solutions 

(such as fighter jets and autonomous systems) is a high-level roadmap to identify key 

capabilities, milestones, and dependencies that may span multiple years. The next 

level of planning is annual planning (i.e., what can be accomplished in the upcoming 

year). The annual plan is defined and broken down into quarterly time boxes to iden-

tify what deliverables can be completed in the each quarter, knowing that priorities 

over the course of the year may change and are frequently re-evaluated. The quarterly 

planning allows for many small, agile teams to visualize the work across teams and 

to work through dependencies between teams. These teams begin to collaborate for 

increased flow and feedback. 

In large solutions, especially early in the development phase of hardware, flow 

between components often needs to be coordinated between and by the teams. Each 

team needs to understand the work of the other teams, as well as the interfaces and 

integration points. Quarterly plans are broken down into smaller time boxes known as 
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iterations, with the industry standard for iterations being two weeks. Sprint/iteration 

plans are further broken down into daily plans in which each team decides what can 

be accomplished each day. Each planning level provides time boundaries that enable 

teams to quantify “plan” versus “actual,” allowing the product solution to course- 

correct based on empirical evidence.

Figure 2: Multiple Planning Horizons

3. Base Decisions on Objective Evidence of System State and 
Performance

Throughout development, the system is built in time-boxed increments. Each incre-

ment provides an integration point for demonstrating objective evidence of the 

feasibility of the solution in process. That evidence is provided through a demonstra-

tion of working features of the system. For hardware and embedded systems, the 

early demonstrations may be limited to mathematical formulas, 3D models, walking 

skeletons (tiny implementations of the system that perform an end-to-end function), 

Daily Team Plans

Sprint Plans

Quarterly Roadmap
of Features

Year Lookout of
High Level Functions

Product Vision and
Major Capabilities
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or prototypes that prove a specific element of the design is viable. For example, the 

minimum testable feature of a new integrated circuit can start as a walking skeleton 

using a breadboard, as shown in Figure 3. 

Figure 3: Example of a Walking Skeleton for an Embedded Component

Improvements are made until the final production version is fully tested and ready 

to deploy. Because these reviews are performed routinely on a set cadence (for exam-

ple, every two weeks), system development progress can be measured, assessed, and 

evaluated by the relevant stakeholders frequently, predictably, and throughout the 

solution development life cycle. Faults can be found and corrected in small batches 

when the cost of change is low. The transparency of this process provides the financial, 

technical, and fitness-for-purpose governance needed to ensure that the continuing 

investment produces a commensurate return. 

4. Architect for Scale, Modularity, and Serviceability
Our design and engineering processes need to scale to the level of complexity inherent 

in large cyber-physical systems. Architectural decisions can support this by emphasiz-

ing modularity and serviceability. Modularity refers to component decoupling with a 

focus on the smallest unit of functionality. Serviceability refers to a focus on lowering 
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the cost and time required to alter functionality both pre- and post-deployment.

Architecture modularity significantly impacts DevOps goals to continuously 

develop, integrate, deploy, and release value. Modular component-based architectures 

communicate in a consistent way through well-defined interfaces and thereby reduce 

dependencies between components, as displayed in Figure 4. Such components can be 

independently tested, released, or upgraded.

Figure 4: Components Communicate Through Well-Defined Interfaces

Architectural decisions also impact serviceability. First, there is a cost trade-off 

between optimizing the product’s material and manufacturing costs with the products 

ongoing serviceability. Second, the assignment of systems functions to components 

and implementation choice for that function—software, programmable hardware 

(FPGA), customer hardware (ASIC), and ultimately mechanical parts—also impacts 

serviceability. For example, a common automotive dashboard has mechanical inputs 

wired to electrical circuits to send messages out of a common bus to control enter-

tainment, climate, windows, and the like. Newer dashboards replace all mechanical 

inputs with a single touchscreen with software-defined controls, which sends mes-

sages around the system. Assigning functionality to mechanical and electrical 

components offers lower material costs. Assigning that functionality to software 

and a touchscreen provides the ability to continually release new functionality (even 

over-the-air) and dramatically reduces the cost of delay when releasing new value to 

users. In this example, releasing new value provides better economics than reducing 

material costs.

Communications

Component

Interface
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While some architectural decisions should be made early, many decisions can and 

should be delayed as more is learned about the system during development. Eco-

nomics should drive the point at which exploring architectural alternatives stops and 

decisions become fixed. Modeling, simulation, and low-fidelity prototypes allow us to 

prove out architectural decisions and obtain rapid feedback as we iterate across poten-

tial solutions in a cost-efficient manner. The specific buffer between architecture and 

implementation will scale with the complexity of the target system and the maturity 

of the solution to enable sufficient time for communication and alignment. 

5. Iterate and Reduce Batch Size
To enable flow, fast feedback, and continuous learning, it is important to work in 

small batch sizes—both in terms of the size of the component or feature and the unit 

of change. Small batches of functionality increase both the rate of technical exchange 

and the flow of work, enabling rapid feedback. Working with small components often 

reduces complexity and enhances transparency of the achieved results. Short iter-

ation cycles, as displayed in Figure 5, provide stakeholders with regular reviews of 

results against a defined set of acceptance criteria, enable the opportunity to pro-

vide feedback, and help identify integration challenges earlier in the development life 

cycle. Working in short iterations throughout the development of the component or 

architecture enables agility and regular validation that the component is satisfying 

downstream expectations. Using this faster feedback model improves understanding 

of both the system being built and the requirements of system users. Iterative devel-

opment is enabled by model-based systems engineering and well-defined interfaces. 

Model-based systems engineering, A/B testing, and dark launches provide the ability 

to make changes and rapidly understand the impact of those changes. 

There are unique distinctions when developing hardware in small iterations as 

compared to software. Lead time associated with fabricating hardware creates a spe-

cific order on how the work for the iterations is defined and planned. This results in 

a more defined flow of the development activities, limiting some of the flexibility in 

reprioritization, yet still taking advantage of the learning and feedback opportunities 

each iteration brings. With hardware development, the results of an iteration may 

not produce something an end user can use; that is, it is not “potentially shippable” 

but still results in functionality and objective evidence of completed work that can be 
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tested against a subset of the acceptance criteria. For example, early iterations may 

involve 1:1 paper cut-outs of hardware that enable quick feedback from manufactur-

ing. Later iterations can evolve to a 3D rapid prototype after an approach has been 

agreed upon.

Short iterations provide the opportunity for teams to plan for the earliest integra-

tion points possible and regularly validate requirements and interfaces. The goal is to 

find the earliest point for integration of hardware and software in a defined integrated 

solutions environment. Early iterations of hardware development may focus on the 

creation of an emulator, while later iterations focus on the creation of a first proto-

type, with refinement and enhancement of the prototype guided by the results of each 

completed iteration.

Later in the product life cycle—such as when a vehicle or aircraft is already in oper-

ation—there is the opportunity for more frequent delivery of software enhancements 

into the production environment. 

Figure 5: Frequent Feedback Loops 

6. Establish Cadence and Synchronization
Applying cadence and synchronization can help manage the inherent variability 

in solution development. Cadence provides a rhythmic pattern—the dependable 

heartbeat of the development process—and provides predictable time boxes and 

business rhythms that allow knowledge workers to focus on solution development 

and variability management. Cadence also makes routine that which can be routine 

and makes wait times predictable, leading to lower transaction costs of key events, 

including planning, integration, demonstrations, feedback, and retrospectives. 

Iteration 1 Iteration 2 Iteration 3 Iteration 4
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However, cadence alone is not sufficient, especially where cadences may traditionally 

vary greatly between different disciplines. For example, hardware design, manufactur-

ing, and testing have different, longer lead times and cycle times than software. 

Synchronization between these varying cadences for significant cyber-physical 

systems, such as aircraft or satellites, is necessary to enable Lean flow with frequent 

integration, which Boeing discovered when they built the “dream liner,” which started 

Boeing’s outsourced integration strategy that resulting in large cost overruns.2

 Synchronization allows all teams participating in the development of a large, com-

plex system to align their efforts in time. Because all cross-discipline teams adopt the 

same cadence, they will also start and stop on iteration boundaries and larger pro-

gram increments together. This allows multiple perspectives from the various teams 

to be understood, resolved, and integrated at the same time. It also enables all teams 

and key stakeholders to gather periodically for cross-domain planning of the next 

increment of development. As illustrated in Figure 6, together cadence and synchro-

nization give system developers the tools they need to help manage the complexity 

and variability of large-scale solution development.

Figure 6: Cadence and Synchronization

Cadence

Makes routine that which can be routine
Lowers the transaction cost of events
Makes waiting times predictable
Facilitates planning
Makes small batches feasible

Causes multiple events to happen at
    the same time
Prevents alignment errors from accumulating
Facilitates cross-functional tradeoffs
Provides objective evidence
Allows synchronization of design cycles

Example:
harmonic multiple
system integration

Synchronization

1 Denning, Steve. “What Went Wrong At Boeing?” Forbes. January 21, 2013. https://www.forbes.com/sites 
/stevedenning/2013/01/21/what-went-wrong-at-boeing/#17cb14207b1b.
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7. Employ “Continu-ish Integration”
Continuous integration is the heart of DevOps. However, even in software-only sys-

tems this is no small feat, and teams and programs invest significant amounts of time 

and effort—along with purchased, open source, and custom tooling—to address the 

challenge.

Cyber-physical systems are far more difficult to integrate continuously, as there 

are limiting laws of physics as well as supplier, organizational, and test environment 

practicalities that must be considered. In addition, some components have long lead 

times to take into consideration, and you certainly can’t integrate what you don’t 

have. In its place, “continu-ish integration” is a euphemism that indicates a planned 

strategy to integrate frequently, based on the economic tradeoff of the transaction 

cost of integration versus the risk reduction of objective evidence of system per-

formance. Figure 7 illustrates how partial integration helps address that risk, even 

when full integration is not feasible. This can be accomplished by limiting the scope of 

integration tests, creating staging environments, and applying virtual or emulated 

environments, stubs, and mocks. 

Figure 7: Development Cadence Timebox

Partial Integration

Full Solution
Integration
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In summary, the design of the integration strategy for cyber-physical systems is 

fundamentally an economic tradeoff, one that weighs the cost of more frequent inte-

gration against the risk and ultimate cost of building an inadequate system. 

8. Be Test Driven
As described earlier, systems built on modular, component-based architectures that 

communicate through well-defined interfaces are much simpler to test and verify 

functional behavior. Each component can be independently built and tested (and in 

the spirit of DevOps, released) with more confidence that the change does not break 

another part of the system.

To build component-level tests, engineers apply test-driven development, meaning 

they write the tests for a change before they implement the change in software or hard-

ware. Writing tests first helps engineers think deeply about the scope of a requirement 

change before beginning the implementation. Once all tests pass, the work is complete.

Further, these tests should run automatically. In test-driven cultures, the envi-

ronment automatically runs a rich set of component tests on any change. ECAD and 

MCAD tools have had testing infrastructure built into them for years. Adopting a test-

driven mindset means creating the tests first and running them frequently.

A rich set of component-level tests reduces reliance on larger, slower, system-level 

tests and dramatically reduces the number of errors caught at the system level. The 

overall testing goal is to run many automated component level tests frequently on 

every change and run the larger, slower, more expensive tests less frequently, as 

shown in Figure 8.

Figure 8: Traditional versus Agile Testing Triangles

System-Level
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DevOps strives for a continuous delivery pipeline, where small engineering 

changes flow through different levels of testing, potentially all the way to deployment. 

This is a challenge for hardware, as it is often not available early on, and large systems 

hardware can be expensive. To address this, teams invest early in building hardware 

proxies that grow in maturity over time. Proxies include hardware from prior system 

versions, simulators, development kits, early hardware revisions, digital twins, 3D 

printing, wood instead of metal, and so on. These proxies allow engineers to validate 

some assumptions early by continuously integrating and continuously deploying (CI/

CD) into the pipeline, as depicted in Figure 9. 

Figure 9: Strive to Add Hardware (Proxies) to the Continuous Delivery Pipeline

Continuous testing environments often require numerous testing platforms. Oth-

erwise, platform availability will become the bottleneck and slow the entire engineer-

ing process. It is imperative to understand the economics of investing in proxies and/

or sufficient numbers of hardware-testing infrastructure to avoid the cost of delaying 

value delivery.

CONCLUSION

Applying the theory and practice of learnings from DevOps has the potential to dra-

matically improve the development of complex cyber-physical systems. Implement-

ing practices such as organizing around value, utilizing multiple planning horizons, 

Develop Repository Build System Build System

Proxy HW

HW Test Production

(on check-in) (automatic) (automatic) (on availability) (on approval)
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basing system decisions on objective evidence, reducing batch size, architecting for 

modularity and scale, iterating rapidly for fast feedback, applying cadence and syn-

chronization, “continu-ishly” integrating the entire system, and applying test-driven 

development methods are keys to succeeding in this endeavor.

The companies that solve this problem first will increase transparency, reduce cycle 

time, increase value for money, and innovate faster. Simply, they will build better sys-

tems faster, and they will become the ultimate economic and value delivery winners 

in the marketplace.
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