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Preface

In May of this year, the fifth annual DevOps Enterprise Forum was held in Portland, 

Oregon. As always, industry leaders and experts came together to discuss the issues 

at the forefront of the DevOps Enterprise community and to put together guidance to 

help us overcome and move through those obstacles.

This year, the group took a deeper dive into issues we had just begun to unpack 

in previous years, providing step-by-step guidance on how to implement a move 

from project to product and how to make DevOps work in large-scale, cyber-physical 

systems, and even a more detailed look at conducting Dojos in any organization. 

We also approached cultural and process changes like breaking through old change- 

management processes and debunking the myth of the full-stack engineer. And of 

course, we dived into the continuing question around security in automated pipelines. 

As always, this year’s topics strive to address the issues, concerns, and obstacles 

that are the most relevant to modern IT organizations across all industries. Afterall, 

every organization is a digital organization. 

This year’s Forum papers (along with our archive of papers from years past) are an 

essential asset for any organization’s library, fostering the continual learning that is 

essential to the success of a DevOps transformation and winning in the marketplace.

A special thanks goes to Jeff Gallimore, our co-host and partner and co-founder at 

Excella, for helping create a structure for the two days and the weeks that followed to 

help everyone stay focused and productive. Additional thanks goes to this year’s Forum 

sponsor, XebiaLabs. And most importantly a huge thank you to this year’s Forum par-

ticipants, who contribute their valuable time and expertise and always go above and 

beyond to put together these resources for the entire community to share and learn 

from.

Please read, share, and learn, and you will help guide yourself and your organiza-

tion to success!

—Gene Kim

June 2019

Portland, Oregon
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Introduction

As DevOps continues to challenge the status quo and improve busi-

ness outcomes for software systems, many of the world’s larger 

enterprises are working to identify how to scale these practices across 

large, complex systems composed of hardware, firmware, and soft-

ware. It is important that companies have the ability to iterate and 

deploy faster, allowing them to adapt to changing needs, to reduce 

cycle time for delivery, to increase value for money, to improve trans-

parency, and to leverage innovations.

In a previously published DevOps Enterprise Forum paper from 

2018, Industrial DevOps: Applying DevOps and Continuous Delivery 

to Significant Cyber-Physical Systems, we described a set of princi-

ples that development organizations can use to bring the power of 

DevOps to the build and maintenance of large-scale, cyber-physical 

systems such as vehicles, robots, complex medical devices, defense 

weaponry, and others. We introduced the term “Industrial DevOps” 

to expand the definition of DevOps in order to enable significant, 

cyber-physical system development programs to be more responsive 

to changing needs while also reducing lead times. This guidance has 

helped to establish the feasibility of using DevOps practices to more 

efficiently build, deploy, and maintain some of the world’s most 

important—and most complex—systems. 

In this paper, we take the original guidance concept of Industrial 

DevOps, eight supporting principles, and the subsequent definitions 

one step further, by applying the principles in the context of a hypo-

thetical example using autonomous cars and then relating it back 

to those governing principles. Our intent is to help readers better 

understand the applicability and need for Industrial DevOps in dif-

ferent solutions, beyond those that are strictly software. 

To illustrate how the practices work in a lifelike example, we have 

utilized a fictitious company known as Alset Transport, who produces 
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vehicles to support assisted and autonomous driving in both the commercial and con-

sumer markets. Alset Transport needs to manage challenges including multiple com-

petitors, rapidly changing technology, regulatory compliance, and safety concerns. 

This example will focus on the safety technology for the autonomous vehicle, spe-

cifically the collision-avoidance capability that uses obstacle detection, vehicle con-

trol, and sensor management. The collision-avoidance capability is key to Alset Trans-

port’s continued success in the market. It uses sensors to detect an impending impact 

from any object that comes too close to the vehicle, based on a previously proven 

set of algorithmic parameters. Successful collision avoidance is directly tied to safety, 

regulatory compliance, and consumer trust in the vehicle. Any changes to collision 

avoidance will directly impact Alset Transport’s future sales.

Use Case Overview

Business Objective 

Alset Transport produces vehicles to support assisted and autonomous driving in 

both the commercial and consumer markets. Their success in the commercial space 

has quickly increased interest in their consumer models. As a result, Alset is eager 

to implement enhancements to their new vehicles, as well as to vehicles currently in 

active operation. 

The first significant enhancement is targeted toward improving the proactive and 

reactive collision-avoidance capabilities of their vehicles. This improvement is driven 

by a desire to increase their vehicle safety rating and to address consumer feedback on 

braking behavior. Successful deployment of this improvement will increase customer 

satisfaction and consumer demand, as well as provide a more preferred platform for 

autonomous, commercial fleet vehicles. It is anticipated that the improvements will 

increase revenue by 5–8% annually over the next three years.

The Approach

Alset Transport’s goal is to improve the collision-avoidance capability by increasing 

the obstacle-detection system’s actionable closing distance by 50% of the current 
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operating distance. The enhancement of the collision-avoidance capability will be han-

dled through a combination of incremental updates made to:

• sensor firmware

• control-system software

• user-interface software

The Alset teams are going to articulate requirements through the definition of two 

core epics in the product backlog:

• Enhance obstacle-detection software or firmware in existing vehicles.

• Update camera and associated technology in future vehicles.

The epics and associated hypotheses are defined in Figure 1. The teams will 

implement epics by applying principles of Industrial DevOps throughout execution, 

deployment, and operations. We further define the epics that will be implemented 

in Table 1.
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Figure 1: Epic Hypothesis

Epic 1 Epic 2

Value Streamlet Collision avoidance Collision avoidance

Title Software-only updates to existing 
fleet vehicles

New camera

Systems Impacted Obstacle detection, vehicle control, 
sensor management

Chassis, vehicle control, camera

Activities • Update sensor types

• Refactor architecture to increase 
modularity

• Testing/integration

• IT security updates

• Regulatory evaluation

• Update sensor mount

• Hardware interoperability

• Materials evaluation

• Testing/integration

Change Type Software, firmware Software, hardware

Downstream Features Impacted Cruise control, lane detection, parking 
assist

Lane detection, parking assist

Table 1: Epic Descriptions

Epic 1: Enhance obstacle detection
software/firmware in existing vehicles

Epic 2: Update hardware to support
new camera

For:
Who:

Our Solution:

Alset Consumer Car Operators
Want increased safety and 
system trust
Increase actionable closing
distance

Business Outcome:

Leading Indicators:

NFRs:

Increase Safety ratings
Increase consumer trust
Increase revenue
Net Promoter Score Sales
Increase Usability by 25%
Increase Actionability 50%

For:
Who:

Our Solution:

Alset Consumer Car Operators
Want increased safety and 
system trust
Increase visibility with camera

Business Outcome:

Leading Indicators:

NFRs:

Increase Safety ratings
Increase consumer trust
Increase revenue
Net Promoter Score Sales
Increase Usability by 25%
Increase Actionability XX%
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How Does the Use Case Impact the Principles in Industrial 
DevOps?

The following is the list of Industrial DevOps principles generated from our first 

paper. We will walk through each of these principles to discuss in greater detail 

how this applies to an autonomous vehicle, which includes hardware and software 

components.

• Visualize and organize around the value stream.

• Use multiple horizons of planning.

• Base decisions on objective evidence of system state and performance.

• Architect for scale, modularity, and serviceability.

• Iterate and reduce batch size.

• Establish cadence and synchronization.

• Employ “continu-ish” integration.

• Be test-driven.

Visualize and Organize around the Value Stream

A “value stream” can be defined as a sequence of activities required to architect, 

design, build, test, and deploy a product or service that delivers value to a consumer. 

For large, complex cyber-physical systems, we further decompose value streams into 

value streamlets. A value streamlet is defined as a smaller value stream that feeds 

into a larger one. The next step is to organize a cross-functional team around the 

value streamlet. This team should have all the skills needed to implement changes 

from definition to operations in order to independently deliver user value. The bene-

fits of cross-functional teams organized around the value streamlet are shorter lead 

times and higher quality levels. In many cases, some teams will be more hardware- 

centric while others will be more software-centric.

In reference to our example of Alset Transportation building an autonomous vehi-

cle, we employ the value stream concepts. The steps to provide an autonomous car 

to a customer are a value stream. An autonomous car is a complex system; therefore, 

we can further decompose into the interoperable value streamlets, such as the body 
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and frame, chassis, power train, infotainment, and safety and security. The safety and 

security value streamlet can be broken down into multiple streamlets of their own, 

including collision avoidance, electronic stability control, active head constraints, etc. 

Our collision-avoidance streamlet impacts multiple vehicle systems, including obsta-

cle detection, vehicle control, and sensor management. 

Alset Transport has structured their agile teams around value streamlets to plan 

and organize their work in order to have independent, deployable components with 

synchronized integration points. (See Figure 2.)

Figure 2: Synchronized Integration Points

In the case of our example, both Epic 1 and 2 are delivering value through the same 

streamlet: collision avoidance.

Epic 1: Software-Only Updates to Existing Fleet Vehicles

The first collision-avoidance team is focused on making software changes to the exist-

ing fleet. Teams will refactor the architecture to increase modularity, incrementally 

update sensor types, improve sensor management refresh rate, and more. Given the 

nature of the changes, we selected a more software-focused collision-avoidance team 

to deliver Epic 1’s capabilities.

Epic 2: New Camera 

The next collision-avoidance team is focused on the new camera and the correspond-

ing required vehicle updates. Physical models of the system are shown in Figures 3 

and 4. The team needs to make updates to both the forward and backup cameras, 

which impact the hardware, firmware, and software in the collision-avoidance stream-

Vehicle Value Stream

Safety and Security Value Streamlet

Collision Avoidance Value Streamlet
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let. Risk will be reduced by making and evaluating changes in a digital twin: a full 

digital model of the vehicle.

Figure 3: Overview of Vehicle

Figure 4: Rear Camera 

Multiple Horizons of Planning

The Agile influence in DevOps emphasizes multiple horizons of planning, typically 

containing a high-level vision and program plan, which can be many years for large, 

complex cyber-physical systems. The program plan is further broken down into an 



APPLIED INDUSTRIAL DEVOPS |  11

annual, quarterly, sprint, and daily plan, as outlined in Figure 5. Each horizon of plan-

ning informs the next, allowing teams to adjust and adapt based on what they have 

learned as well as supporting forecasting of capability delivery.

Figure 5: Multiple Planning Horizons

Through each of the planning horizons, teams focus on the principles of DevOps 

and how to create flow, gain feedback from stakeholders and users, and take advantage 

of the learning from each iteration across a massive value stream. But, what does it 

mean to deliver frequently with products that can take years to build? It means break-

ing down the products into smaller components, engaging stakeholders to determine 

priorities, and delivering those broken-down parts over multiple horizons of time. 

Our approach supports companies like Alset Transport who need longer planning 

horizons to communicate with stakeholders and to account for hardware lead times 

while enabling their teams to develop components through smaller batch sizes with 

frequent integration for rapid learning.

Daily
Team Plans

Iteration
Plans

Quarterly Roadmap
of Features

Year Lookout of
High Level Functions

Product Vision
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Product Vision and High-Level Horizon Plan

All products begin with a vision and a high-level plan to deliver value. The vision and 

high-level plan for Alset Transport includes improving the existing fleet of vehicles 

already in production and providing enhancements for the next fleet of vehicles in the 

idea and early concept phases.  

Annual Plan

Large, complex cyber-physical systems can take many years to complete. Teams 

decompose the high-level plans into annual plans in order to simplify problems and 

provide more focus on what they are going to build first.

Alset Transport creates their annual plan by taking a holistic systems view and 

evaluating its various components and supporting suppliers. They have selected two 

epics that will focus on refactoring the system architecture for modularity, increas-

ing sensor types, and improving the recognition and reaction behaviors associated 

with braking by incorporating a new camera. The hypothesis associated with the epics 

states that these changes will improve customer satisfaction, safety ratings for their 

vehicles, and the platform for supporting autonomous, commercial fleet vehicles.

Quarterly/Increment Plan (Or Slightly Smaller Increments)

Annual plans can still be quite complex and difficult to manage. Teams can break 

down annual plans into quarterly, or slightly smaller, program increment plans. The 

plans are visualized through a road map identifying the features to be delivered over 

the next few quarters. The road map is constructed at a level high enough to provide 

sufficient detail for stakeholders to have an idea of the path forward while allowing for 

an ease of change and reprioritization.

Alset Transport further breaks down their annual plan into a quarterly plan that 

includes features such as enhancing the Lidar sensor color profile and improving the 

sensor management refresh rate. 
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Iteration/Sprint-Level Plans (and Communications across Agile 
Teams)

At the iteration or sprint level, the teams break down work and time into detailed 

plans and user stories. The detailed plan for each story or work item for a given 

iteration is further defined into step-by-step plans by the team completing the 

work. Their detailed plans include designs, tests using prototypes, digital twins, 

simulators, emulators, and acceptance criteria that they will demonstrate when the 

iteration ends. The team plans the work in a manner that, whether the backlog items 

are software or hardware, can demonstrate completeness to some functionality of 

an integrated system for the product owner and other stakeholders at the end of the 

iteration.

Alset Transport has decomposed some of their team features into user stories that 

include splitting Lidar by component value to obtain color saturation and explore 

camera interoperability.

Daily Plan

The team collaborates daily to understand what work they completed yesterday and 

what they are going to do today in order to complete the iteration goals. 

Alset Transport teams hold daily stand-ups to provide situational awareness to the 

capabilities being worked on and to identify any support needed. This plan provides a 

short feedback loop to improve the flow of delivery.

Multiple horizons of planning impact our example in several ways. The product 

managers and owners refined their initial features from the quarterly road map. As 

plans were defined, Alset Transport’s teams identified multiple dependencies and 

the associated risks. It’s important that all team members, including those from 

both hardware and software, physically participate in planning events. Teams define 

iteration-level items that can be demonstrated via some specific acceptance criteria. 

As their plans are created, they identify the earliest integration points possible using 

the existing hardware with an intent to integrate several times per iteration.
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Epic 1: Software-Only Updates to Existing Fleet Vehicles

An example of how Alset Transport’s collision-avoidance team may break down 

work across the quarter can be seen in Table 2.

Epic Q1 Features Q2 Features Q3 Features Q4 Features

Enhance 
obstacle-detection 
software through 
multiple sensor types 
and refactor architec-
ture for modularity

Enhance Lidar sensor 
color profile

Improve sensor 
management refresh 
rate Obstacle- 
identification 
accuracy

Enhanced frontal 
distance detection

Tamperproof 
vehicle’s networked 
communication 
system

Table 2: Epic 1 Example: Work across the Quarter

Epic 2: New Camera 

An example of how Alset Transport’s collision-avoidance team may break down work 

across the quarter can be seen in Table 3.

Epic Q1 Features Q2 Features Q3 Features Q4 Features

Add new camera, 
associated technol-
ogy, and hardware 
updates

Interoperability cam-
era (spike)
 
New sensor
 
Lidar enhancement
 
Recording playback

Procure camera’s
ongoing traffic 
surveillance
 
Obstacle-detection 
system enhancement

Enhanced communi-
cations with 
braking-system 
sensors

Seat belt–sensor 
coordination
 
Camera prototype on 
vehicle

Camera instantiation
 
Full regulatory 
compliance

Table 3: Epic 2 Example: Work across the Quarter

Base Decisions on Objective Evidence of System State 
and Performance

Each of the time horizons support the ability to base decisions on objective evidence. 

The evidence supplied will vary based on time, number of teams, and technology avail-

able. Teams will focus on what can be built in each two-week iteration and how it can 

be demonstrated in a way that allows stakeholders to interpret what they’re seeing 
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and judge whether it meets their needs. Evidence for software, firmware, and hard-

ware are not always demonstrated in the same manner. However, due to increasing 

technology improvements, many of the changes for complex, cyber-physical systems 

can be evaluated in a digital environment using a computer model or digital twin of 

the whole vehicle, emulators, and simulators.

As the teams have access to physical components, or hardware, they can begin 

prototyping on a sample of production cars assigned for this purpose. The ability for 

the team to test portions of the epic on a physical production machine supports the 

understanding of nuances in the user experience, the interaction between the vehicle’s 

responsive system, and the impact to the passenger. Through regular testing of the 

features, teams will continue to make adjustments to ensure a safe user experience. 

Each time an enhancement is needed, the change becomes part of the team’s iter-

ation plans in the form of a user story. The teams will also observe several ways that 

their live tests and observations differ from those on the digital twin when it is con-

figured with the existing camera’s input. This data is passed on to the team who owns 

the digital twin, so it can be enhanced to better reflect reality. 

In the case of our example at Alset Transportation, testing the frequency and 

vibration of the camera may not be effective in a digital environment. Complex sys-

tems require multiple types of testing in a variety of environments. Alset Transport 

performs lab testing on the new camera and software while the car housing is being 

designed. This test uncovers a sensitivity of the new faster focus camera at a cer-

tain frequency of vibration. This early test identified the problem early, allowing 

this requirement to be incorporated into the design rather than being discovered at 

system integration when the housing is completed, thus greatly reducing cost, times-

cales, and rework. 

Epic 1: Software-Only Updates to Existing Fleet Vehicles

An example of how Alset Transport’s collision-avoidance team may evaluate work at 

each level is shown in Table 4.
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Time Horizon Capability Evidence

Epic Annual Enhance obstacle detection 
through updates to sensor 
types; refactoring architecture

Drive vehicle through multi-
ple scenarios to validate sen-
sor types; evaluate deploy-
ment rate for new updates

Feature Quarterly Enhanced Lidar 
sensor color profile

View colors in 
simulator to verify 
improvement

User Story Iteration Split Lidar by component 
value

Validate demonstration of 
Lidar split through testing

Task Day Update cloud-point extents 
in Esri

CI/CD pipeline has identified 
no errors with change

Table 4: Epic 1 Example: Work Level Evaluation

Epic 2: New Camera 

An example of how Alset Transport’s collision-avoidance team may evaluate work at 

each level is shown in Table 7.

Time Horizon Capability Evidence

Epic Annual Add new camera, associated 
technology, and hardware

Drive vehicle through 
multiple scenarios with new 
backup camera

Feature Quarterly Interoperable camera- 
mounting components

View hardware change within 
digital twin across multiple 
cameras

User Story Iteration Prototype camera mount 
options on a model

View camera mount on model

Task Day Define camera models Review list of camera models

Table 7: Epic 2 Example: Work Level Evaluation 
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Architect for Scale, Modularity, and Serviceability 

Architecture modularity significantly impacts DevOps goals to continuously develop, 

integrate, deploy, and release value. Modular, component-based architectures com-

municate in a consistent way through well-defined interfaces and thereby reduce 

dependencies between components. (See Figure 6). Such components can be inde-

pendently tested, released, or upgraded. As teams work to create the product road 

map, they concentrate on several areas using the current system architecture.

• Review the architecture for constraints.

• Identify dependencies and determine if there are enhancements that can be 

made to the architecture to reduce dependencies.

• Identify interfaces and data formats.

• Determine what updates need to be made in the architecture to reduce work.

• Make adjustments or changes to the concept of operations, including the sup-

ply chain, field services, operations staff, interaction models, etc.

• Capture potential vulnerabilities and security risks.

Figure 6: Components Communicate through Well-Defined Interfaces

Acceleration

Obstacle
Detection

Sensor
Management

Vehicle
Communications

• Consumer user
• Merchant user

• Fleet
   management
   user

Consumer
Portal

Vehicle
Operations

Camera

Lens

Signal
Processor

Steering

Autonomous Deliver Vehicle

Vehicle Control

Braking Lighting
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So, how would the principle of architecting for modularity apply to the Alset Trans-

port teams who are working on these epics?

Epic 1: Software-Only Updates to Existing Fleet Vehicles

As the team looks at the impact of Epic 1, they review the architecture of the vehicle- 

control software for constraints, dependencies, and risks. When the team works to 

improve obstacle detection, they focus on how the event is handled. This means under-

standing the architecture and, later, ensuring the testing of vehicle control to the reac-

tion of the braking system and communications. The team also looks at how changes to 

the software impacts the obstacle-detection system and how to deliver the enhanced 

functionality without having to do a complete recertification of many subsystems. 

Because this is a software-only update, they do not perceive any limitations imple-

menting the improved obstacle-detection feature in the system, as it is nicely con-

tained within the vehicle-control component. Although the algorithm updates are 

complex, no extraordinary constraints are encountered, and the risk of being able to 

deploy is minimized.

Epic 2: New Camera 

As the team moves toward Epic 2, the scope of the change extends far beyond vehi-

cle control. The new camera not only has a higher resolution but a faster focus time 

as well. This leads to changes in the sensor-management software and the interface 

with the vehicle-control module. The amount of data vastly increases, affecting the 

communication bus of the vehicle-control module, as well as impacting the resource 

usage. Both memory and CPU significantly increase. It becomes obvious that obstacle 

detection needs to be as near real time (NRT) as possible. 

Another constraint that is identified is the impact on testing. In the future, it can 

be expected that the variance in cameras will increase. The processing characteristics 

for each camera will vary. 

As the team works through reviewing the architecture, a constraint is clearly iden-

tified, and the team decides to introduce a new module between sensor management 



APPLIED INDUSTRIAL DEVOPS |  19

and vehicle control as identified in Figure 6. This shifts responsibility for identifying an 

obstacle event to this new module: obstacle detection. During iterations, this compo-

nent starts out as a programmable development board as a proof of concept, evolves 

into a field-programmable gate array (FPGA), and is finally integrated into the vehicle 

as an application-specific integrated circuit (ASIC) to vastly improve performance and 

power efficiency. The modularity and adaptability of the system architecture enabled 

the ease of additional sensors to be integrated without impacting the vehicle-control 

module.

During system testing, we have the ability to test the streamlets in a modular fash-

ion. This means we can test events within the obstacle detection such as processing 

camera data and seeing results quickly without impacting the entire system. Larger 

solution tests are conducted on a regular quarterly cadence, or more frequently if 

needed, to test the end-to-end flow of the capability across the entire streamlet or 

value stream depending on the impact of the enhancement. Because teams are able 

to have access to a digital-twin system, and can build and test in a modular fashion, 

fewer issues are found during large solution testing. 

The modularity of the system also allows for the teams to work independently 

throughout the iteration with limited impact to other teams. For example, the evolu-

tion from the development board to ASIC did not impact the iteration plans of the team 

working on innovative ways to handle obstacle events with improved safety features.

Iterate and Reduce Batch Size

As discussed earlier, each epic is broken down into multiple levels: from epic, feature, 

user story, to task. The break down of work allows Alset Transport teams to reduce 

their batch size and iterate through capability development, which enables flow 

through the system while offering fast feedback and continuous learning opportuni-

ties. During each iteration, teams implement user stories, which are small pieces of 

functionality or system enablers that can be built, tested, and proven to show results. 

As the team seeks to learn more about the system they are building, they perform 

regular user engagement.

The Alset Transport teams were building and testing the stories in two-week itera-

tion cycles. Over time they recognized that their user stories were too large and taking 
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the entire iteration to complete. This created a large bottleneck with all the testing being 

pushed to the end of the iteration, and too often, the testing was slipping into the next 

iteration. These large batches resulted in increased time and effort as they struggled 

to integrate the new functionality. The team noticed an increase of defects and longer 

delays as integration had become more complex. A team member with a Lean devel-

opment background suggested they try limiting the work in process (WIP) and create 

smaller batch sizes. First they focused on writing smaller stories that could result in sto-

ries being accepted throughout the iteration versus all stories being tested and accepted 

at the end of the iteration. This also meant that instead of starting all stories on day one 

of the iteration, they limited how many they worked at one time. The team would swarm 

around the minimal set of stories and get them completed as quickly as possible. 

Short iterations provide an opportunity for teams to plan the earliest integration 

points possible with regularly validated requirements and interfaces. Early iterations 

of hardware development focus on the creation of an emulator, while later iterations 

focus on the creation of the first prototype with refinements and enhancements 

guided by the results of each completed iteration. Working in small batch sizes pro-

vides regular visibility of progress and makes course changes less impactful with a 

quicker recovery time than past experiences working in larger development cycles. 

Additionally, working in short iterations promotes the concepts of building for flow, 

providing feedback, and a continuous learning cycle.

Epic 1: Software-Only Updates to Existing Fleet Vehicles

During the quarterly planning event, the hardware- and software-engineering teams 

analyzed the first epic focused on the software-only system updates for the existing 

fleet vehicles. They selected a sensor system with an available test environment, such 

as a simulated environment, and small, code-based sensors, such as a forward and 

backup camera. 

Epic 2: New Camera 

The hardware team focusing on Epic 2 participated in the planning of their sprints and 

identified the constraints, interface requirements, and module behavior of each unit. 
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The team developed new functionality for radar sensors and was able to use previously 

generated tests on a radar simulator to check the new code deployment. They focused 

on frequent code integration with the new camera and radar system and resolved any 

integration errors. Upon successful demonstrations and test results in the simulated 

environment, the team moved to testing the firmware and software updates on a couple 

of production cars. This provided end-to-end functional and safety testing to ensure a 

positive user experience. Keeping to their commitment of working in small batch sizes 

and limiting WIP allowed them to test more frequently in the production environment 

with faster feedback as they validated the new cameras.  

Establish Cadence and Synchronization

Cadence and synchronization are critical for the planning and development of the 

solution. Cadence provides predictable time boxes and rhythmic patterns for plan-

ning. Synchronization offers the team an opportunity to align their efforts and get 

regular feedback on how the integrated system is working. 

For Alset Transport, the hardware and software teams agreed to adopt the same 

quarterly program increment and iteration cadences. Originally, the teams discussed 

different iteration lengths, whether they should be two-, three-, or four-week cycles, 

and what would work best for them. During the discussion, the teams balanced their 

concerns regarding being able to break down work at a granular-enough level to fit 

within a two-week iteration with the concern of having iterations that were too long, 

resulting in delayed feedback and reprioritization mid-iteration. 

After negotiating, the teams agreed to go with a two-week iteration length and to 

adjust it in the future if they find it isn’t working for them. The hardware team still 

has concerns but is willing to give it a try based on their learning and recognition that 

a two-week iteration may not mean completed capability, but rather a point for them 

to receive feedback on their work products. 

As part of the synchronization points, the teams agreed that at the end of each iter-

ation they would demonstrate their progress and receive feedback. Both the software 

and hardware teams collaborated as Agile units in order to create their quarterly and 

iteration plans and to align their demonstrations. 
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Epic 1: Software-Only Updates to Existing Fleet Vehicles

Their quarterly program of increment planning enabled them to identify and plan the 

specific software enhancements needed to implement the first epic and areas where 

they needed to collaborate with the hardware-focused team supporting Epic 2.

Epic 2: New Camera 

The hardware team focused on solution-specific camera updates, while engaging with 

the software team to address risks and dependencies. At the same time, the hardware 

team identifiesd and planned out the new camera features, models, designs, and long 

lead items. 

Both teams established a cadence of regular quarterly planning and iterations at 

a two-week period. They will provide regular synchronization by conducting demon-

strations at the end of each two-week iteration at the system level. 

As illustrated in Figure 7, cadence and synchronization together provide teams 

with the tools they need to help manage the complexity and variability of large-scale 

solution development.

Figure 7: Cadence and Synchronization

SynchronizationCadence

Makes routine that which can be routine
Lowers the transaction cost of events
Makes waiting times predictable
Facilitates planning
Makes small batches feasible

Causes multiple events to happen at the same time
Prevents alignment errors from accumulating
Facilitates cross-functional tradeoffs
Provides objective evidence
Allows synchronization of design cycles

Example: Harmonic
multiple system
integration
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Employ “Continu-ish” Integration

The principle “employ ‘continu-ish’ integration” describes how the goal of truly con-

tinuous integration faces economic and practical challenges when dealing with large-

scale, cyber-physical systems. It isn’t practical to integrate full end-to-end solutions 

as frequently as we can with pure software systems. The value streamlets discussed 

in section one may evolve at different rates. Rather, we use the economic and phys-

ical constraints to create a plan that integrates as much as possible as frequently as 

possible—with the larger goal being overall risk reduction for the program. Figure 8 

illustrates this approach.

Figure 8: “Continu-ish” Integration

Each streamlet will mature their part of the solution independently by evolving the 

software and hardware. Streamlets evolve hardware using development kits, bread-

boards, brassboards, systems on chip (SoCs), FPGAs, hardware revs, and other pro-

totypical solutions to frequently integrate their localized changes with the system’s 

other streamlets. Balancing the costs and effort to create new hardware with the value 

of fast feedback and reduced risk helps determine the optimal frequency for revisions. 

Looking at ways to lower manufacturing time and costs, many find that frequency to 

be within weeks or a few months.

Full Solution
Integration

Partial
Integration
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Per our vehicle exemplar, there are two different cases, each with different integra-

tion patterns.

Epic 1: Software-Only Updates to Existing Fleet Vehicles

The first epic is the most straightforward. The application of cadence and synchroni-

zation defines that work will naturally occur in short, predefined timeboxes—typically, 

sprints of two weeks aggregated into periodic program increments. The logical archi-

tecture illustrates the various software and firmware elements that need to be updated. 

In support of incremental development, the program has established a digital twin 

and test environment that makes developer-level testing cheaper and faster. Most new 

developments and code-level integrations can happen routinely, daily, or even hourly 

on that environment. Routine DevOps practices of source code control, automated 

builds, and automated build verification tests apply well in this case.

In terms of deployment, however, the situation becomes more interesting as 

eventually the new algorithms have to be field-tested in a real vehicle. For software 

changes, teams could apply a continuous delivery, the DevOps deployment strategy:

• Release to the controlled test environment and run validation protocols on 

vehicles on the test track.

• Deploy a feature toggle into a canary-release environment for vehicles in pro-

duction, which allows for remote and server selective toggling of the capability, 

as well as limits exposure to the selected target vehicles. Validate the solution 

in the limited-scope but true production environment.

• Leaving the feature toggle in place, deploy the update to the entire fleet. Selec-

tively control and enable the feature toggles until the entire fleet is enabled.

• Finally, move the change into the production process.

Epic 2: New Camera 

The addition of the new camera presents a more significant challenge to implement-

ing DevOps and assuring continuous flow. Camera specs have been established and 

provided by the supplier. The question becomes, how can the development teams 
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continuously develop and validate the mechanical and software aspects of a new 

camera—one with higher resolution, an enhanced depth of field, and a faster focus 

time—which does not yet exist? To address this, the teams employ the following 

strategy:

• Build a camera-emulator software device, or camera test double, which feeds 

simulated camera data in via the predetermined API and protocols. This device 

is deployed into the test bed and on a test vehicle to allow new algorithm devel-

opment for enhanced obstacle detection without the physical device. The team 

also supports field-testing mocks on an actual test vehicle. 

• In the meantime, the mechanical design has been tested with mechanical mock-

ups, which are consistent with the intended physical properties of the camera. 

• Beta devices replace the camera double as the supplier makes them available. 

Teams use the new camera revisions for continuous testing and evaluation, as 

well as to provide electrical, performance, and mechanical feedback to the sup-

plier.

• During this time, hardware teams from the chassis group collaborate with the 

supplier on mounting positions and angles to optimize manufacturing and to 

retrofit existing vehicles. Feedback is also provided to the supplier as new cam-

era revisions become available.

• Eventually, the supplier provides the final form factor, pilot-camera hardware 

devices, which are integrated into the test environment for continuous devel-

opment and validation.

• When first production lots arrive, the team replaces all newly enhanced devices 

and continues testing.

• The team finalizes mechanical production specs and provides them for manu-

facturing.

Be Test-Driven

Test-driven simply means beginning with the end in mind. With test-driven devel-

opment (TDD), teams write the tests for a change before they implement it, in both 

software and hardware. Over time, TDD creates a large set of automated and manual 

regression tests that help ensure quality software and hardware. 
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Modular architectures enable TDD by making testing functional behavior for indi-

vidual system components simpler and faster. Components can be independently 

built and tested, and, in the spirit of DevOps, released with more confidence that 

the change does not break another part of the system. The above-mentioned integra-

tion strategies, coupled with the development cadence and synchronization, provide 

opportunities for higher-level tests to validate full system functionality. 

When it comes to the firmware aspects of our vehicle, frameworks exist for applying 

TDD and mocks, or test doubles, to hardware description language in electronic design 

(VHDL) and Verilog for unit testing. Additionally, TDD can be applied to register trans-

fer language (RTL) defining the digital portions of design blocks in ASIC circuit design. 

Engineers need to adopt the test-first mindset in order to apply TDD in this space.

Test-driven development also applies to hardware development. Model-based sys-

tems engineering (MBSE) and computer-aided design (CAD) environments for elec-

trical and mechanical development provide rich support for testing and validating 

designs. In fact, some of these tools provide more mature and feature-rich testing 

capabilities than other software tools. The build of mocks and test doubles isolates 

hardware changes for early evaluation and testing. 

Epic 1: Software-Only Updates to Existing Fleet Vehicles

Test-driven development in Epic 1 is relatively straightforward. These practices and 

tools have long existed for software. For every software modification, the developer 

adds or modifies one or more tests and then updates the software to pass them. This 

process repeats, with all tests being rerun continuously, until the change is completed 

and delivered.

The test-first challenge for cyber-physical systems resides in the fact that much of 

the software has been embedded. Existing test-driven infrastructure expects to launch 

the unit under these tests, drive its execution, and gather data to report results. Many 

embedded systems today target both a host and specific environment. Existing TDD 

infrastructure can be used for host-based testing but needs to be modified for target- 

based testing. Testing on the target requires additional infrastructure to launch, 

execute, and transfer test results.
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Epic 2: New Camera

When it comes to hardware changes, the vehicle’s modular architecture facilitates TDD. 

Test doubles allow development on parts of the system to proceed independently. In 

Figure 9, a camera test double simulates the updated 

message format and frequency to allow sensor man-

agement to evolve. As the camera design develops, 

any changes to the interface or its behavior are also 

made to the test double. Sensor management is done 

entirely in software, so common TDD practices can 

apply.

Within the camera subsystem, a lens test double 

simulates optical signals that the processor can con-

vert into formatted messages. In the electrical CAD 

environment, the designer starts by creating a small, 

new—or perhaps, modifying an existing—signal 

simulation for the lens. The designer sees it fail then 

modifies the design to process this new signal. The 

designer can create or modify another signal from 

the new lens and update the design. This small test, or change process, repeats until 

the signal-processor design is completed.

Conclusion

Alset Transport is a fictional company but demonstrates a real and recognizable 

opportunity for companies who build cyber-physical solutions. The application of 

DevOps principles permits Alset Transport’s teams to work with more agility in 

smaller batch sizes. An implementation of digital twins permits automated test-

ing and continuous integration. As the products move to physical systems, this 

work enables unique continu-ish integration, shortening cycles between software 

deployment to hardware. These combined capabilities allow Alset Transport’s teams 

to develop against the multiple epics simultaneously and deliver value in shorter, iter-

ative time spans. 

Sensor
Management

Camera

Lens

Signal
Processor

Figure 9: Test Doubles 
Facilitate Test-Driven 

Development for Hardware
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Ultimately, Alset Transport’s application of Industrial DevOps will deliver 

increased value to customers more quickly and, as a result, yield greater economic 

rewards—an outcome that should attract all manufacturers of cyber-physical 

systems. The companies that solve this problem early will improve transparency, 

reduce cycle time, increase value for money, and innovate faster. More simply, they 

will build better systems quicker, and they will become the ultimate economic and 

value-delivery winners in the marketplace.
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